4.4 Article

Effects of flow shear and Alfven waves on two-dimensional magnetohydrodynamic turbulence

期刊

PHYSICS OF PLASMAS
卷 15, 期 5, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2913270

关键词

-

资金

  1. EPSRC [EP/G003955/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/G003955/1] Funding Source: researchfish

向作者/读者索取更多资源

The suppression of turbulent transport by large scale mean shear flows and uniform magnetic fields is investigated in two-dimensional magnetohydrodynamic turbulence driven by a small-scale forcing with finite correlation time. By numerical integration the turbulent magnetic diffusivity D-T is shown to be significantly quenched, with a scaling D-T proportional to B-2 Omega(-5/4)(0), which is much more severe than in the case of a short or delta correlated forcing typified by white noise, studied in E. Kim and B. Dubrulle [Phys. Plasmas 8, 813 (2001)]. Here B and Omega(0) are magnetic field strength and flow shear rate, respectively. The forcing with finite correlation time also leads to much stronger suppression of momentum transport through the cancellation of the Reynolds stress by the Maxwell stress with a positive small value of turbulent viscosity, nu(T)> 0. While fluctuating kinetic and magnetic energies are unaffected by the magnetic field just as in the case of a delta correlated forcing, they are much more severely quenched by flow shear than in that of a delta correlated forcing. Underlying physical mechanisms for the reduction of turbulent transport and turbulence level by flow shear and magnetic field are discussed. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据