4.4 Article

Ions motion effects on the full unstable spectrum in relativistic electron beam plasma interaction

期刊

PHYSICS OF PLASMAS
卷 15, 期 1, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2828607

关键词

-

向作者/读者索取更多资源

A relativistic fluid model is implemented to assess the role of the ions motion in the linear phase of relativistic beam plasma electromagnetic instabilities. The all unstable wave vector spectrum is investigated, allowing us to assess how ion motions modify the competition between every possible instability. Beam densities up to the plasma one are considered. Due to the fluid approach, the temperatures must remain small, i.e., nonrelativistic. In the cold limit, ions motion affect the most unstable mode when the beam gamma factor gamma(b)greater than or similar to alpha M/mZ(i), alpha being the beam to plasma density ratio, Z(i) the ion charge, M their mass, and m the electrons. The return current plays an important role by prompting Buneman-type instabilities which remain in the nonrelativistic regime up to high beam densities. Nonrelativistic temperatures only slightly affect these conclusions, except in the diluted beam regime where they can stabilize the Buneman modes. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据