4.5 Review

Biomolecular dynamics and binding studies in the living cell

期刊

PHYSICS OF LIFE REVIEWS
卷 11, 期 1, 页码 1-30

出版社

ELSEVIER
DOI: 10.1016/j.plrev.2013.11.011

关键词

Live cell imaging; Fluorescence microscopy; Dynamics; Proximity; Protein-protein interaction

资金

  1. DFG [DI 258/14, DI 258/17]
  2. DAAD
  3. BMBF [0315581A-D]
  4. TAP [2007 FE 9011]
  5. FLI

向作者/读者索取更多资源

Isolation and preparation of proteins of higher organisms often is a tedious task. In the case of success, the properties of these proteins and their interactions with other proteins can be studied in vitro. If however, these proteins are modified in the cell in order to gain or change function, this is non-trivial to correctly realise in vitro. When, furthermore, the cellular function requires the interplay of more than one or two proteins, in vitro experiments for the analysis of this situation soon become complex. Instead, we thus try to obtain information on the molecular properties of proteins in the living cell. Then, the cell takes care of correct protein folding and modification. A series of molecular techniques are, and new ones become, available which allow for measuring molecular protein properties in the living cell, offering information on concentration (FCS), dynamics (FCS, RICS, FRAP), location (PALM, STED), interactions (F3H, FCCS) and protein proximities (FRET, BRET, FLIM, BiFC). Here, these techniques are presented with their advantages and drawbacks, with examples from our current kinetochore research. The review is supposed to give orientation to researchers planning to enter the field, and inform which techniques help us to gain molecular information on a multi-protein complex. We show that the field of cellular imaging is in a phase of transition: in the future, an increasing amount of physico-chemical data can be determined in the living cell. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据