4.7 Article

Multiscale liquid drop impact on wettable and textured surfaces

期刊

PHYSICS OF FLUIDS
卷 26, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4892083

关键词

-

资金

  1. NSF PREM [DMR0934206]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [0934206] Funding Source: National Science Foundation

向作者/读者索取更多资源

The impact of microscopic liquid drops on solids with a variety of surface characteristics is studied using numerical simulations. The focus is on relatively low impact velocities leading to bouncing or spreading drops, and the effects of wettability. Molecular dynamics and lattice Boltzmann simulation methods are used for nanometer-sized and continuum drops, respectively, and the results of the two methods are compared in terms of scaled variables. We consider surfaces which are flat, curved or pillared, with either homogeneous interactions or cross-shaped patterns of wettability. In most situations we observe similar drop behavior at both length scales; the two methods agree best at low impact velocities on wettable surfaces while discrepancies are most pronounced for strongly hydrophobic surfaces and for higher velocities. (c) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据