4.7 Article

The effect of viscoelasticity on the dynamics of gas bubbles near free surfaces

期刊

PHYSICS OF FLUIDS
卷 25, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4790512

关键词

-

资金

  1. Engineering and Physical Sciences Research Council of the United Kingdom [EP/C513037]

向作者/读者索取更多资源

The dynamics of bubbles immersed in a viscoelastic fluid directly beneath an initially plane free surface is modelled using the boundary integral method. The model predicts a range of dynamics that is dependent on the Deborah number, the Reynolds number and the proximity of the bubble to the free surface. The motion of the free surface jet caused by the collapse of a bubble in a viscoelastic fluid can be significantly retarded compared with the Newtonian case. The axial jet predicted in many instances in the Newtonian case is not observed when the inertial forces are sufficiently small. In this case an annular jet forms that can penetrate the bubble. At high Deborah numbers, there is a return to Newtonian-like dynamics since the effects of viscosity are abated by elasticity to such an extent that inertia is the prevailing influence on bubble dynamics. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790512]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据