4.7 Article

Linear oscillations of constrained drops, bubbles, and plane liquid surfaces

期刊

PHYSICS OF FLUIDS
卷 24, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3697796

关键词

-

向作者/读者索取更多资源

The small-amplitude oscillations of constrained drops, bubbles, and plane liquid surfaces are studied theoretically. The constraints have the form of closed lines of zero thickness which prevent the motion of the liquid in the direction normal to the undisturbed free surface. It is shown that, by accounting explicitly for the singular nature of the curvature of the interface and the force exerted by the constraint, methods of analysis very close to the standard ones applicable to the unconstrained case can be followed. Weak viscous effects are accounted for by means of the dissipation function. Graphical and numerical results for the oscillations of constrained drops and bubbles are presented. Examples of two-and three-dimensional gravity-capillary waves are treated by the same method. A brief consideration of the Rayleigh-Taylor unstable configuration shows that the nature of the instability is not affected, although its growth rate is decreased. (C) 2012 American Institute of Physics. [http://dx. doi.org/10.1063/1.3697796]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据