4.7 Article

A continuum model of colloid-stabilized interfaces

期刊

PHYSICS OF FLUIDS
卷 23, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3584815

关键词

colloids; emulsions; finite element analysis; flow simulation; gels; Navier-Stokes equations; shear flow; surface tension; two-phase flow; wetting

资金

  1. German Science Foundation [Vo899/6-1, SFB 609]
  2. National Science Foundation Division of Mathematical Sciences and the Division of Materials Research
  3. Division Of Mathematical Sciences
  4. Direct For Mathematical & Physical Scien [915128] Funding Source: National Science Foundation

向作者/读者索取更多资源

Colloids that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. Examples include bicontinuous interfacially jammed emulsion gels (bijels), which were proposed in this study by Stratford et al. [Science 309, 2198 (2005)] as a hypothetical new class of soft materials in which interpenetrating, continuous domains of two immiscible viscous fluids are maintained in a rigid state by a jammed layer of colloidal particles at their interface. We develop a continuum model for such a system that is capable of simulating the long-time evolution. A Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase flow system is combined with a surface phase-field-crystal model for the microscopic colloidal system along the interface. The presence of colloids introduces elastic forces at the interface between the two immiscible fluid phases. An adaptive finite element method is used to solve the model numerically. Using a variety of flow configurations in two dimensions, we demonstrate that as colloids jam on the interface and the interface crystallizes, the elastic force may be strong enough to make the interface sufficiently rigid to resist external forces, such as an applied shear flow, as well as surface tension induced coarsening in bicontinuous structures. (C) 2011 American Institute of Physics. [doi:10.1063/1.3584815]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据