4.7 Article

Nonlinear viscous fluid patterns in a thin rotating spherical domain and applications

期刊

PHYSICS OF FLUIDS
卷 23, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3665132

关键词

-

向作者/读者索取更多资源

We study the nonlinear incompressible fluid flows within a thin rotating spherical shell. The model uses the two-dimensional Navier-Stokes equations on a rotating three-dimensional spherical surface and serves as a simple mathematical descriptor of a general atmospheric circulation caused by the difference in temperature between the equator and the poles. Coriolis effects are generated by pseudoforces, which support the stable west-to-east flows providing the achievable meteorological flows rotating around the poles. This work addresses exact stationary and non-stationary solutions associated with the nonlinear Navier-Stokes. The exact solutions in terms of elementary functions for the associated Euler equations (zero viscosity) found in our earlier work are extended to the exact solutions of the Navier-Stokes equations (non-zero viscosity). The obtained solutions are expressed in terms of elementary functions, analyzed, and visualized. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3665132]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据