4.7 Article

Stability of liquid sheet edges

期刊

PHYSICS OF FLUIDS
卷 22, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3474640

关键词

Rayleigh-Taylor instability

向作者/读者索取更多资源

Accelerating edges of thin liquid sheets are ubiquitous and are known to experience a longitudinal (along-the-edge) instability, which often leads to their break-up and atomization. The fundamental physical mechanisms of this instability are studied analytically in the quasisteady regime, which admits a concise modeling. It is discovered that the classical Rayleigh-Taylor mechanism is substantially modified which leads to a stability picture different from that for flat interfaces, in part due to an interplay with Rayleigh-Plateau mechanisms. In particular, as the Bond number increases, first, only one critical wavenumber is excited, but for higher values of the Bond number several critical wavenumbers can coexist with the same growth rates. This allows for the transition from the regular picture, in which one wavelength sets the pattern, to the frustrated picture, in which a few wavenumbers compete with each other. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3474640]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据