4.7 Article

Effects of rotation on stability of viscous stationary flows on a spherical surface

期刊

PHYSICS OF FLUIDS
卷 22, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3526687

关键词

-

向作者/读者索取更多资源

We study the incompressible viscous fluid flows within a thin rotating atmospheric shell. The model uses the two-dimensional Navier-Stokes equations on a spherical surface and serves as a simple mathematical description of a general atmospheric circulation caused by the difference in temperature between the equator and the poles. Linearized stability of a particular stationary flow is considered. Under the assumption of no friction and a distribution of temperature dependent only upon latitude, the stationary flow models a zonal distribution of pressure corresponding to atmospheric currents parallel to the circles of latitude. We prove analytically that the stationary flow is asymptotically stable in the time evolution of the Navier-Stokes equations. When the spherical surface is truncated between two symmetrical rings near the North and South Poles, the asymptotic stability of the stationary flow is verified numerically. (C) 2010 American Institute of Physics. [doi:10.1063/1.3526687]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据