4.7 Article

Theoretical prediction of turbulent skin friction on geometrically complex surfaces

期刊

PHYSICS OF FLUIDS
卷 21, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3241993

关键词

-

资金

  1. Agence Nationale pour la Recherche (ANR) of France

向作者/读者索取更多资源

This article can be considered as an extension of the paper of Fukagata et al. [Phys. Fluids 14, L73 (2002)] which derived an analytical expression for the constituent contributions to skin friction in a turbulent channel, pipe, and plane boundary layer flows. In this paper, we extend the theoretical analysis of Fukagata et al. (formerly limited to canonical cases with two-dimensional mean flow) to a fully three-dimensional situation allowing complex wall shapes. We start our analysis by considering arbitrarily shaped surfaces and then formulate a restriction on a surface shape for which the current analysis is valid. A theoretical formula for skin friction coefficient is thus given for streamwise and spanwise homogeneous surfaces of any shape, as well as some more complex configurations, including spanwise-periodic wavy patterns. The theoretical analysis is validated using the results of large eddy simulations of a turbulent flow over straight and wavy riblets with triangular and knife-blade cross-sections. Decomposition of skin friction into different constituent contributions allows us to analyze the influence of different dynamical effects on a skin friction modification by riblet-covered surfaces. (C) 2009 American Institute of Physics. [doi:10.1063/1.3241993]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据