4.7 Article

Inclusion of heat transfer computations for particle laden flows

期刊

PHYSICS OF FLUIDS
卷 20, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2911022

关键词

-

向作者/读者索取更多资源

A newly developed direct numerical simulation method has been used to study the dynamics of nonisothermal cylindrical particles in particulate flows. The momentum and energy transfer equations are solved to compute the effects of heat transfer in the sedimentation of particles. Among the effects examined is the drag force on nonisothermal particles, which we found strongly depends on the Reynolds and Grashof numbers. It was observed that heat advection between hotter particles and fluid causes the drag coefficient of particles to significantly increase at relatively low Reynolds numbers. For Grashof number of 100, the drag enhancement effect diminishes when the Reynolds number exceeds 50. On the contrary, heat advection with colder particles reduces the drag coefficient for low and medium Reynolds number (Re < 50) for Grashof number of -100. We used this numerical method to study the problem of a pair of hot particles settling in a container at different Grashof numbers. In isothermal cases, such a pair of particles would undergo the well-known drafting-kissing-tumbling (DKT) motion. However, it was observed that the buoyancy currents induced by the hotter particles reverse the DKT motion of the particles or suppress it altogether. Finally, the sedimentation of a circular cluster of 172 particles in an enclosure at two different Grashof numbers was studied and the main features of the results are presented. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据