4.7 Article

Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport

期刊

PHYSICS OF FLUIDS
卷 20, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2963507

关键词

-

向作者/读者索取更多资源

Recent experiments have demonstrated that large-scale ion concentration gradients, or concentration polarization, can be generated from perm-selective transport through nanochannels or nonuniform surface conduction around polarizable electrodes. The theoretical modeling of concentration polarization phenomena is, however, a daunting task: for example, an analysis of the above mentioned systems requires the treatment of a set of highly coupled, nonlinear partial differential equations for the ion concentrations, electric field, and fluid flow. In this paper, we present and analyze a model system that simply and clearly highlights a variety of fundamental aspects of concentration polarization. Specifically, we consider a binary symmetric electrolyte overlying a flat wall, whose surface charge varies periodically. An electric field applied parallel to the wall causes nonuniform ionic transport within the thin diffuse layer adjacent to the wall. In turn, this nonuniform transport drives gradients in the bulk ion, or salt, concentration and electric field. Notably, the bulk variations persist over the macroscopic length scale L of the surface charge variation rather than the microscopic (Debye length lambda(D)) thickness of the diffuse layer. We formalize these ideas by deriving effective boundary conditions coupling the diffuse-layer transport to the bulk electrolyte dynamics. In the limit of a weak applied field and small surface charge density (the Debye-Huckel limit), the electrolyte response is investigated for three prototypical cases: (i) a steady (dc) field, (ii) a suddenly applied field, and (iii) an oscillatory (ac) field. In particular, for a steady field we examine the interplay of diffusion and advection in shaping the bulk concentration polarization zones. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据