4.7 Article Proceedings Paper

Direct numerical simulation of unsteady flow in channel with rough walls

期刊

PHYSICS OF FLUIDS
卷 20, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.3005859

关键词

-

向作者/读者索取更多资源

A fundamental study has been performed to understand the effect of unsteady forcing on turbulence statistics in channel flow with rough walls using direct numerical simulation. Unsteady flows have been generated by applying an unsteady nonzero mean forcing in the form of time varying pressure gradient such that the amplitude of oscillations is between 19% and 26% of mean centerline velocity and covering a range of forcing frequencies. The analysis has revealed unsteady forcing, depending on the forcing frequency, results in enhanced roughness compared to steady channel flow. The rough-wall flow dynamics have been categorized into high-, intermediate-, and low-frequency regimes. In the regime of high- frequency forcing, unsteadiness alters the mean velocity and turbulence intensities only in the inner layer of the turbulent boundary layer. Further, the turbulence intensities are out of phase with each other and also with the external forcing. In the regime of intermediate- frequency forcing, mean velocity and turbulence intensities are altered beyond the inner layer. In the inner layer, the turbulence intensities are out of phase with each other. The Reynolds stress is in phase with the external forcing in the inner layer, but it is out of phase in the outer layer. In the regime of low-frequency forcing, the mean velocity and turbulence intensities are significantly altered throughout the turbulent boundary layer. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3005859]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据