4.7 Article

Streaming potential and electroviscous effects in periodical pressure-driven microchannel flow

期刊

PHYSICS OF FLUIDS
卷 20, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2939391

关键词

-

向作者/读者索取更多资源

An analytical solution for pressure-driven periodical electrokinetic flows in a two-dimensional uniform microchannel is presented based on the Poisson-Boltzmann equation for electrical double layer and the Navier-Stokes equations for incompressible viscous fluid. The analytical results indicate that the periodical streaming potential strongly depends on the periodical Reynolds number (Re=omega h(2)/nu) which is a function of the frequency, the channel size, and the kinetic viscosity of fluids. For Re < 1, the streaming potential behaves similarly to that of steady flow, whereas it decreases rapidly with Re as Re>1. In addition, the electroviscous force affects greatly both the periodical flow and streaming potential, particularly when the nondimensional electrokinetic diameter kappa h is small. The electroviscous force has been found to depend on three factors: first, the electroviscous parameter, which is defined as the ratio of the maximum electroviscous force to the pressure gradient; second, the distribution parameter describing the distribution of the electroviscous force over the cross section of the microchannel; third, the coupling coefficient, which is a function of both the periodical Reynolds number and electroviscous parameter, determining both the amplitude attenuation and phase offset of the electroviscous force. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据