4.7 Article

Turbulent inflow conditions for large-eddy simulation based on low-order empirical model

期刊

PHYSICS OF FLUIDS
卷 20, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2957019

关键词

-

向作者/读者索取更多资源

Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据