4.6 Article

Can Biochar From Contaminated Biomass Be Applied Into Soil for Remediation Purposes?

期刊

WATER AIR AND SOIL POLLUTION
卷 226, 期 6, 页码 -

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11270-015-2456-9

关键词

Biochar; Cadmium; Zinc; Lead; Plant biomass; Batch sorption experiment

资金

  1. CIGA [20132007]

向作者/读者索取更多资源

The carbon rich material obtained from pyrolysis process, i.e. biochar, has been widely discussed during the last decade due to its utilisation as a soil amendment. Furthermore, there is an unsolved question of biomass disposal from phytoremediation technologies. The idea of contaminated biomass pyrolysis has appeared, but there is lack of information about possible biochar utilisation obtained by this process. The aim of our study was to observe sorption properties of biochar prepared from contaminated biomass and release of contaminants from biochar back into the environment. The biomass of fast growing trees and maize was harvested on a site significantly damaged by risk element contamination (Cd, Pb and Zn). Plant biomass was pyrolysed and then the batch (de) sorption experiments were settled. The results confirmed no significant differences in metal sorption ability between biochars prepared from contaminated and uncontaminated biomass under the same conditions. The trend of maximum sorption capacity of observed matrices followed the order: wood biochar + soil (WB + soil) > wood uncontaminated biochar + soil (WUB + soil) > maize biochar + soil (MB + soil) > soil for cadmium, WB + soil > WUB + soil > soil for lead and MB + soil > WUB + soil > WB + soil > soil for zinc. Despite of increase of Zn desorption from wood biochars, maximum sorption capacity of the final WB + soil system was comparable to the WUB+soil sample. Our laboratory experiments showed high potential of biochar from contaminated plants as a soil amendment with sorption abilities and minimal risk of metal release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据