4.6 Article

Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 56, 期 18, 页码 5889-5901

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/56/18/008

关键词

-

资金

  1. Swiss National Science Foundation [205320-103872]
  2. European Commission [LSHC-CT-2006-018858 PROMET]

向作者/读者索取更多资源

For real-time optoacoustic (OA) imaging of the human body, a linear array transducer and reflection mode optical irradiation is usually preferred. Such a setup, however, results in significant image background, which prevents imaging structures at the ultimate depth determined by the light distribution and the signal noise level. Therefore, we previously proposed a method for image background reduction, based on displacement-compensated averaging (DCA) of image series obtained when the tissue sample under investigation is gradually deformed. OA signals and background signals are differently affected by the deformation and can thus be distinguished. The proposed method is now experimentally applied to image artificial tumours embedded inside breast phantoms. OA images are acquired alternately with pulse-echo images using a combined OA/echo-ultrasound device. Tissue deformation is accessed via speckle tracking in pulse echo images, and used to compensate in the OA images for the local tissue displacement. In that way, OA sources are highly correlated between subsequent images, while background is decorrelated and can therefore be reduced by averaging. We show that image contrast in breast phantoms is strongly improved and detectability of embedded tumours significantly increased, using the DCA method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据