4.6 Article

A radiation damage repair model for normal tissues

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 53, 期 13, 页码 3595-3608

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/53/13/014

关键词

-

向作者/读者索取更多资源

A cellular Monte Carlo model describing radiation damage and repair in normal epithelial tissues is presented. The deliberately simplified model includes cell cycling, cell motility and radiation damage response (cell cycle arrest and cell death) only. Results demonstrate that the model produces a stable equilibrium system for mean cell cycle times in the range 24-96 h. Simulated irradiation of these stable equilibrium systems produced a range of responses that are shown to be consistent with experimental and clinical observation, including (i) re-epithelialization of radiation-induced lesions by a mixture of cell migration into the wound and repopulation at the periphery; (ii) observed radiosensitivity that is quantitatively consistent with both rate of induction of irreparable DNA lesions and, independently, with the observed acute oral and pharyngeal mucosal reactions to radiotherapy; (iii) an observed time between irradiation and maximum toxicity that is consistent with experimental data for skin; (iv) quantitatively accurate predictions of low-dose hyper-radiosensitivity; (v) Gomperzian repopulation for very small lesions (similar to 2000 cells) and (vi) a linear rate of re-epithelialization of 5-10 mu m h(-1) for large lesions (> 15 000 cells).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据