4.2 Article

Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature

期刊

PHYSICS AND CHEMISTRY OF MINERALS
卷 41, 期 5, 页码 361-371

出版社

SPRINGER
DOI: 10.1007/s00269-014-0655-3

关键词

Heat transport properties; Periclase; Corundum; High temperature; Hematite; Brucite; Ilmenite

资金

  1. National Science Foundation [EAR-0757841]
  2. Directorate For Geosciences
  3. Division Of Earth Sciences [0757841] Funding Source: National Science Foundation

向作者/读者索取更多资源

Thermal diffusivity (D) was measured up to 1,800 K of refractory materials using laser-flash analysis, which lacks radiative transfer gains and contact losses. The focus is on single-crystal MgO and Al2O3. These data are needed to benchmark theoretical models and thereby improve understanding of deep mantle processes. Measurements of AlN, Mg(OH)(2), and isostructural BeO show that the power law (D = AT (-B) ) where T is temperature holds for simple structures. Results for more structurally complicated corundum Al2O3 with and without impurity atoms are best fit by CT (d) + ET (f) where d -1 and f -4, whereas for isostructural Fe2O3, f is near +3 and multiphase ilmenite Fe1.12Ti0.88O3 is fit by the above power law. The positive temperature response for hematite is attributed to diffusive radiative transfer arising from electronic-vibronic coupling. We find good agreement of k and D data on single-crystal and non-porous ceramic Al2O3. For the corundum structure, D is nearly independent of T at high T. Although D at 298 K depends strongly on chemical composition, at high temperature, these differences are reduced. Thermal conductivity provided for MgO and Al2O3, using LFA data and literature values of density and heat capacity, differs from contact measurements which include systematic errors. The effect of pressure is discussed, along with implications for the deepest mantle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据