4.5 Article

What we know but do not understand about nidovirus helicases

期刊

VIRUS RESEARCH
卷 202, 期 -, 页码 12-32

出版社

ELSEVIER
DOI: 10.1016/j.virusres.2014.12.001

关键词

Antiviral drugs; Coronavirus; Discontinuous RNA synthesis; Post-transcriptional quality control; Viral replication; Superfamily 1 helicase

类别

资金

  1. European Union [264286]
  2. Netherlands Organization for Scientific Research (NWO) [700.10.352]
  3. Leiden University Medical Center
  4. Moscow State University (MoBiLe)
  5. Leiden University Fund

向作者/读者索取更多资源

Helicases are versatile NIP-dependent motor proteins of monophyletic origin that are found in all kingdoms of life. Their functions range from nucleic acid duplex unwinding to protein displacement and double-strand translocation. This explains their participation in virtually every metabolic process that involves nucleic acids, including DNA replication, recombination and repair, transcription, translation, as well as RNA processing. Helicases are encoded by all plant and animal viruses with a positive-sense RNA genome that is larger than 7 kb, indicating a link to genome size evolution in this virus class. Viral helicases belong to three out of the six currently recognized superfamilies, SF1, SF2, and SF3. Despite being omnipresent, highly conserved and essential, only a few viral helicases, mostly from SF2, have been studied extensively. In general, their specific roles in the viral replication cycle remain poorly understood at present. The SF1 helicase protein of viruses classified in the order Nidovirales is encoded in replicase open reading frame lb (ORF1b), which is translated to give rise to a large polyprotein following a ribosomal frameshift from the upstream ORFla. Proteolytic processing of the replicase polyprotein yields a dozen or so mature proteins, one of which includes a helicase. Its hallmark is the presence of an N-terminal multinuclear zinc-binding domain, the nidoviral genetic marker and one of the most conserved domains across members of the order. This review summarizes biochemical, structural, and genetic data, including drug development studies, obtained using helicases originating from several mammalian nidoviruses, along with the results of the genomics characterization of a much larger number of (putative) helicases of vertebrate and invertebrate nidoviruses. In the context of our knowledge of related helicases of cellular and viral origin, it discusses the implications of these results for the protein's emerging critical function(s) in nidovirus evolution, genome replication and expression, virion biogenesis, and possibly also posttranscriptional processing of viral RNAs. Using our accumulated knowledge and highlighting gaps in our data, concepts and approaches, it concludes with a perspective on future research aimed at elucidating the role of helicases in the nidovims replication cycle. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据