4.8 Article

Two-Dome Superconductivity in FeS Induced by a Lifshitz Transition

期刊

PHYSICAL REVIEW LETTERS
卷 121, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.121.137001

关键词

-

资金

  1. JSPS KAKENHI [16H07447]

向作者/读者索取更多资源

Among iron chalcogenide superconductors, FeS can be viewed as a simple, highly compressed relative of FeSe without a nematic phase and with weaker electronic correlations. Under pressure, however, the superconductivity of stoichiometric FeS disappears and reappears, forming two domes. We perform electronic structure and spin fluctuation theory calculations for tetragonal FeS in order to analyze the nature of the superconducting order parameter. In the random phase approximation, we find a gap function with d-wave symmetry at ambient pressure, in agreement with several reports of a nodal superconducting order parameter in FeS. Our calculations show that, as a function of pressure, the superconducting pairing strength decreases until a Lifshitz transition takes place at 4.6 GPa. As a hole pocket with a large density of states appears at the Lifshitz transition, the gap symmetry is altered to sign-changing s wave. At the same time, the pairing strength is severely enhanced and increases up to a new maximum at 5.5 GPa. Therefore, our calculations naturally explain the occurrence of two superconducting domes in FeS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据