4.8 Article

Avalanche Behavior in Creep Failure of Disordered Materials

期刊

PHYSICAL REVIEW LETTERS
卷 121, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.121.125501

关键词

-

向作者/读者索取更多资源

We present a mesoscale elastoplastic model of creep in disordered materials, which considers temperature-dependent stochastic activation of localized deformation events that are coupled by internal stresses, leading to collective avalanche dynamics. We generalize this stochastic plasticity model by introducing damage in terms of a local strength that decreases, on statistical average, with increasing local plastic strain. The model captures failure in terms of strain localization in a catastrophic shear band concomitant with a finite-time singularity of the creep rate. The statistics of avalanches in the run-up to failure is characterized by a decreasing avalanche exponent tau that, at failure, approaches the value tau = 1.5 typical of a critical branching process. The average avalanche rate exhibits an inverse Omori law as a function of time to failure. The distribution of interavalanche times turns out to be consistent with the epidemic-type aftershock sequences (ETAS) model of earthquake statistics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据