4.8 Article

Universal Behavior in the Mesoscale Properties of Amyloid Fibrils

期刊

PHYSICAL REVIEW LETTERS
卷 113, 期 26, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.113.268103

关键词

-

资金

  1. Swiss National Science Foundation [200021-138073]
  2. Swiss National Science Foundation (SNF) [200021_138073] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Amyloid fibrils are ubiquitous proteinaceous aggregates occurring in vivo and in vitro, with an invariant structural fingerprint at the molecular length scale. However, interpretation of their mesoscopic architectures is complicated by diverse observable polymorphic states. We here present a constitutive model for amyloid fibrils based on the minimization of the total energy per fibril. The model is benchmarked on real amyloid fibrils studied by atomic force microscopy. We use multistranded ss-lactoglobulin amyloid fibrils as a model system exhibiting a rich polymorphism. The constitutive model quantitatively recapitulates the main mesoscopic topological features of amyloid fibrils, that is, the evolution of fibril periodicity as a function of the ionic strength of the solution and of the fibril width. A universal mesoscopic structural signature of the fibrils emerges from this picture, predicting a general, parameter-free law for the periodicity of the fibrils, that depends solely on the number of protofilaments per fibril. These predictions are validated experimentally and conclusively highlight the role of competing electrostatic and elastic contributions as the main players in the establishment of amyloid fibrils structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据