4.8 Article

Asymptotically Optimal Topological Quantum Compiling

期刊

PHYSICAL REVIEW LETTERS
卷 112, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.112.140504

关键词

-

向作者/读者索取更多资源

We address the problem of compiling quantum operations into braid representations for non-Abelian quasiparticles described by the Fibonacci anyon model. We classify the single-qubit unitaries that can be represented exactly by Fibonacci anyon braids and use the classification to develop a probabilistically polynomial algorithm that approximates any given single-qubit unitary to a desired precision by an asymptotically depth-optimal braid pattern. We extend our algorithm in two directions: to produce braids that allow only single-strand movement, called weaves, and to produce depth-optimal approximations of two-qubit gates. Our compiled braid patterns have depths that are 20 to 1000 times shorter than those output by prior state-of-the-art methods, for precisions ranging between 10(-10) and 10(-30).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据