4.8 Article

Increasing Lifetimes and the Growing Saddles of Shear Flow Turbulence

期刊

PHYSICAL REVIEW LETTERS
卷 112, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.112.044503

关键词

-

资金

  1. Niedersachsisches Ministerium fur Wissenschaft und Kultur
  2. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

In linearly stable shear flows, turbulence spontaneously decays with a characteristic lifetime that varies with Reynolds number. The lifetime sharply increases with Reynolds number so that a possible divergence marking the transition to sustained turbulence at a critical point has been discussed. We present a mechanism by which the lifetimes increase: in the system's state space, turbulent motion is supported by a chaotic saddle. Inside this saddle a locally attracting periodic orbit is created and undergoes a traditional bifurcation sequence generating chaos. The formed new turbulent bubble is initially an attractor supporting persistent chaotic dynamics. Soon after its creation, it collides with its own boundary, by which it becomes leaky and dynamically connected with the surrounding structures. The complexity of the chaotic saddle that supports transient turbulence hence increases by incorporating the remnant of a new bubble. As a a result, the time it takes for a trajectory to leave the saddle and decay to the laminar state is increased. We demonstrate this phenomenon in plane Couette flow and show that characteristic lifetimes vary nonsmoothly and nonmonotonically with Reynolds number.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据