4.8 Article

Asymptotically Optimal Approximation of Single Qubit Unitaries by Clifford and T Circuits Using a Constant Number of Ancillary Qubits

期刊

PHYSICAL REVIEW LETTERS
卷 110, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.110.190502

关键词

-

资金

  1. Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center [DllPC20l66]
  2. National Science Foundation (NSF)
  3. Canada's NSERC
  4. MPrime
  5. CIFAR
  6. CFI
  7. Government of Canada
  8. Province of Ontario

向作者/读者索取更多资源

Decomposing unitaries into a sequence of elementary operations is at the core of quantum computing. Information theoretic arguments show that approximating a random unitary with precision epsilon requires Omega(log(1/epsilon)) gates. Prior to our work, the state of the art in approximating a single qubit unitary included the Solovay-Kitaev algorithm that requires O(log(3+delta)(1/epsilon)) gates and does not use ancillae and the phase kickback approach that requires O(log(2)(1/epsilon) loglog (1/epsilon)) gates but uses O(log(2)(1/epsilon)) ancillae. Both algorithms feature upper bounds that are far from the information theoretic lower bound. In this Letter, we report an algorithm that saturates the lower bound, and as such it guarantees asymptotic optimality. In particular, we present an algorithm for building a circuit that approximates single qubit unitaries with precision epsilon using Omega(log(1/epsilon)) Clifford and T gates and employing up to two ancillary qubits. We connect the unitary approximation problem to the problem of constructing solutions corresponding to Lagrange's four-square theorem, and thereby develop an algorithm for computing an approximating circuit using an average of O(log(2)(1/epsilon) loglog(1/epsilon)) operations with integers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据