4.8 Article

Characterizing Disordered Fermion Systems Using the Momentum-Space Entanglement Spectrum

期刊

PHYSICAL REVIEW LETTERS
卷 110, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.110.046806

关键词

-

资金

  1. U.S. Department of Energy, Division of Materials Sciences [DE-FG02-07ER46453]

向作者/读者索取更多资源

The use of quantum entanglement to study condensed matter systems has been flourishing in critical systems and topological phases. Additionally, using real-space entanglement one can characterize localized and delocalized phases of disordered fermion systems. Here we instead propose the momentum-space entanglement spectrum as a means of characterizing disordered models. We show that localization in one dimension can be characterized by the momentum space entanglement between left and right movers and illustrate our methods using explicit models with spatially correlated disorder that exhibit phases which avoid complete Anderson localization. The momentum space entanglement spectrum clearly reveals the location of delocalized states in the energy spectrum, can be used as a signature of the phase transition between a delocalized and localized phase, and only requires a single numerical diagonalization to yield clear results. DOI: 10.1103/PhysRevLett.110.046806

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据