4.8 Article

Controlling the Competition between Optically Induced Ultrafast Spin-Flip Scattering and Spin Transport in Magnetic Multilayers

期刊

PHYSICAL REVIEW LETTERS
卷 110, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.110.197201

关键词

-

资金

  1. U. S. Department of Energy Office of Basic Energy Sciences [DE-FG02-09ER46652]
  2. Deutsche Forschungsgemeinschaft [Schn-353/17, AE-19/20, GR 4234/1-1]
  3. European Community [GA 253316]

向作者/读者索取更多资源

The study of ultrafast dynamics in magnetic materials provides rich opportunities for greater fundamental understanding of correlated phenomena in solid-state matter, because many of the basic microscopic mechanisms involved are as-yet unclear and are still being uncovered. Recently, two different possible mechanisms have been proposed to explain ultrafast laser induced magnetization dynamics: spin currents and spin-flip scattering. In this work, we use multilayers of Fe and Ni with different metals and insulators as the spacer material to conclusively show that spin currents can have a significant contribution to optically induced magnetization dynamics, in addition to spin-flip scattering processes. Moreover, we can control the competition between these two processes, and in some cases completely suppress interlayer spin currents as a sample undergoes rapid demagnetization. Finally, by reversing the order of the Fe/Ni layers, we experimentally show that spin currents are directional in our samples, predominantly flowing from the top to the bottom layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据