4.8 Article

Solving the Puzzle of ⟨100⟩ Interstitial Loop Formation in bcc Iron

期刊

PHYSICAL REVIEW LETTERS
卷 110, 期 26, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.110.265503

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, Center for Defect Physics, an Energy Frontier Research Center

向作者/读者索取更多资源

The interstitial loop is a unique signature of radiation damage in structural materials for nuclear and other advanced energy systems. Unlike other bcc metals, two types of interstitial loops, 1/2 < 111 > and < 100 >, are formed in bcc iron and its alloys. However, the mechanism by which < 100 > interstitial dislocation loops are formed has remained undetermined since they were first observed more than fifty years ago. We describe our atomistic simulations that have provided the first direct observation of < 100 > loop formation. The process was initially observed using our self-evolving atomistic kinetic Monte Carlo method, and subsequently confirmed using molecular dynamics simulations. Formation of < 100 > loops involves a distinctly atomistic interaction between two 1/2 < 111 > loops, and does not follow the conventional assumption of dislocation theory, which is Burgers vector conservation between the reactants and the product. The process observed is different from all previously proposed mechanisms. Thus, our observations might provide a direct link between experiments and simulations and new insights into defect formation that may provide a basis to increase the radiation resistance of these strategic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据