4.8 Article

Emergence of Crystal-like Atomic Dynamics in Glasses at the Nanometer Scale

期刊

PHYSICAL REVIEW LETTERS
卷 110, 期 18, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.110.185503

关键词

-

资金

  1. EPSRC [EP/F036809/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/F036809/1] Funding Source: researchfish

向作者/读者索取更多资源

The vibrational dynamics of a permanently densified silica glass is compared to the one of an alpha-quartz polycrystal, the silica polymorph of the same density and local structure. The combined use of inelastic x-ray scattering experiments and ab initio numerical calculations provides compelling evidence of a transition, in the glass, from the isotropic elastic response at long wavelengths to a microscopic regime as the wavelength decreases below a characteristic length xi of a few nanometers, corresponding to about 20 interatomic distances. In the microscopic regime the glass vibrations closely resemble those of the polycrystal, with excitations related to the acoustic and optic modes of the crystal. A coherent description of the experimental results is obtained assuming that the elastic modulus of the glass presents spatial heterogeneities of an average size a similar to xi/2 pi.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据