4.8 Article

Self-Averaging Stochastic Kohn-Sham Density-Functional Theory

期刊

PHYSICAL REVIEW LETTERS
卷 111, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.111.106402

关键词

-

资金

  1. Israel Science Foundation [1020/10, 611/11]
  2. Molecularly Engineered Energy Materials (MEEM)
  3. DOE, Office of Science, Office of Basic Energy Sciences [DE-SC0001342]

向作者/读者索取更多资源

We formulate the Kohn-Sham density functional theory (KS-DFT) as a statistical theory in which the electron density is determined from an average of correlated stochastic densities in a trace formula. The key idea is that it is sufficient to converge the total energy per electron to within a predefined statistical error in order to obtain reliable estimates of the electronic band structure, the forces on nuclei, the density and its moments, etc. The fluctuations in the total energy per electron are guaranteed to decay to zero as the system size increases. This facilitates self-averaging'' which leads to the first ever report of sublinear scaling KS-DFT electronic structure. The approach sidesteps calculation of the density matrix and thus, is insensitive to its evasive sparseness, as demonstrated here for silicon nanocrystals. The formalism is not only appealing in terms of its promise to far push the limits of application of KS-DFT, but also represents a cognitive change in the way we think of electronic structure calculations as this stochastic theory seamlessly converges to the thermodynamic limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据