4.8 Article

Origin of Novel Diffusions of Cu and Ag in Semiconductors: The Case of CdTe

期刊

PHYSICAL REVIEW LETTERS
卷 110, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.110.235901

关键词

-

资金

  1. U.S. Department of Energy [DE-AC36-08GO28308]

向作者/读者索取更多资源

It is well known in experimental studies that Cu is usually a fast diffuser in semiconductors. In some semiconductors (e.g., CdTe), Ag is also a fast diffuser. The diffusion plays an important role in many applications when Cu (Ag) is employed to tune the semiconductor's electrical or optical properties. However, the origin of why Cu (Ag) shows different diffusion behavior compared to group-IA elements is still unclear. Using first-principles method, we compare the diffusion behaviors between Cu (Ag) and group-IA elements in CdTe, and find that the novel diffusion is due to the strong coupling between Cu (Ag) d levels and unoccupied host s levels. This coupling alters the stable doping site, diffusion pathway, and diffusion energy curve from those of group-IA elements, which have no active d levels, thus making the Cu (Ag) diffusion faster in many semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据