4.8 Article

Spatiotemporal Evolution of Thin Liquid Films during Impact of Water Bubbles on Glass on a Micrometer to Nanometer Scale

期刊

PHYSICAL REVIEW LETTERS
卷 108, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.108.247803

关键词

-

向作者/读者索取更多资源

Collisions between millimeter-size bubbles in water against a glass plate are studied using high-speed video. Bubble trajectory and shape are tracked simultaneously with laser interferometry between the glass and bubble surfaces that monitors spatial-temporal evolution of the trapped water film. Initial bubble bounces and the final attachment of the bubble to the surface have been quantified. While the global Reynolds number is large (similar to 10(2)), the film Reynolds number remains small and permits analysis with lubrication theory with tangentially immobile boundary condition at the air-water interface. Accurate predictions of dimple formation and subsequent film drainage are obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据