4.8 Article

Dynamics of Melting and Recrystallization in a Polymeric Micellar Crystal Subjected to Large Amplitude Oscillatory Shear Flow

期刊

PHYSICAL REVIEW LETTERS
卷 108, 期 25, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.108.258301

关键词

-

向作者/读者索取更多资源

Shear-induced structural transitions of a micellar cubic phase during large amplitude oscillatory shear flow is studied with time-resolved oscillatory rheological small angle neutron scattering. This technique allows us to resolve the structural changes within a cycle of oscillation. By applying a strain rate near the critical melting shear rate, melting and recrystallization occurs in a cyclic mode. The maximum degree of order is observed when the shear stress reaches a plateau value during the large amplitude oscillatory shear cycle, whereas melting is maximized at the strain rate wave peaks. This structural evolution confirms the cyclic mechanism of sticking and sliding of 2D hexagonal close-packed layers [I. W. Hamley et al., Phys. Rev. E 58, 7620 (1998)].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据