4.8 Article

Direct Measurement of the Triplet Exciton Diffusion Length in Organic Semiconductors

期刊

PHYSICAL REVIEW LETTERS
卷 108, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.108.137401

关键词

-

向作者/读者索取更多资源

We present a new method to measure the triplet exciton diffusion length in organic semiconductors. N,N'-di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl-4,4'-diamine (NPD) has been used as a model system. Triplet excitons are injected into a thin film of NPD by a phosphorescent thin film, which is optically excited and forms a sharp interface with the NPD layer. The penetration profile of the triplet excitons density is recorded by measuring the emission intensity of another phosphorescent material (detector), which is doped into the NPD film at variable distances from the injecting interface. From the obtained triplet penetration profile we extracted a triplet exciton diffusion length of 87 +/- 2.7 nm. For excitation power densities >1 mW/mm(2) triplet-triplet annihilation processes can significantly limit the triplet penetration depth into organic semiconductor. The proposed sample structure can be further used to study excitonic spin degree of freedom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据