4.8 Article

Controlling the Dynamics of Many-Electron Systems from First Principles: A Combination of Optimal Control and Time-Dependent Density-Functional Theory

期刊

PHYSICAL REVIEW LETTERS
卷 109, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.109.153603

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [SFB 762]
  2. European Commission [280879]
  3. MICINN, Spain [FIS2009-13364-C02-01]

向作者/读者索取更多资源

Quantum optimal control theory (QOCT) provides the necessary tools to theoretically design driving fields capable of controlling a quantum system towards a given state or along a prescribed path in Hilbert space. This theory must be complemented with a suitable model for describing the dynamics of the quantum system. Here, we are concerned with many electron systems (atoms, molecules, quantum dots, etc.) irradiated with laser pulses. The full solution of the many-electron Schrodinger equation is not feasible in general, and therefore, if we aim for an ab initio description, a suitable choice is the time-dependent density-functional theory (TDDFT). In this Letter, we establish the equations that combine TDDFT with QOCT and demonstrate their numerical feasibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据