4.8 Article

Nonlocal Screening of Plasmons in Graphene by Semiconducting and Metallic Substrates: First-Principles Calculations

期刊

PHYSICAL REVIEW LETTERS
卷 106, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.106.146803

关键词

-

资金

  1. Danish Ministry of Science, Technology and Innovation
  2. Center on Nanostructuring for Efficient Energy Conversion (CNEEC) under DOE

向作者/读者索取更多资源

We investigate the role of substrates on the collective excitations of graphene by using a first-principles implementation of the density response function within the random-phase approximation. Specifically, we consider graphene adsorbed on SiC(0001) and Al(111) as representative examples of a semiconducting and metallic substrate. On SiC(0001), the long wavelength pi plasmons are significantly damped although their energies remain almost unaltered. On Al(111), the long wavelength pi plasmons are completely quenched due to the coupling to the metal surface plasmon. The strong damping of the plasmon excitations occurs despite the fact that the single-particle band structure of graphene is completely unaffected by the substrates illustrating the nonlocal nature of the effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据