4.8 Article

Symmetry Energy of Dilute Warm Nuclear Matter

期刊

PHYSICAL REVIEW LETTERS
卷 104, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.104.202501

关键词

-

资金

  1. DFG
  2. European Science Foundation
  3. U.S. Department of Energy [DE-AC02-06CH11357, DE-FG03-93ER40773]
  4. Robert A. Welch Foundation [A0330]
  5. Polish Ministry for Research and Higher Education [N N 202 2318 37]
  6. Russian Fund for Basic Research [08-02-01003-a]

向作者/读者索取更多资源

The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据