4.8 Article

Tunable Band Gaps and Excitons in Doped Semiconducting Carbon Nanotubes Made Possible by Acoustic Plasmons

期刊

PHYSICAL REVIEW LETTERS
卷 104, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.104.177402

关键词

-

资金

  1. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
  2. Lockheed Martin Shared Vision program

向作者/读者索取更多资源

Doping of semiconductors is essential in modern electronic and photonic devices. While doping is well understood in bulk semiconductors, the advent of carbon nanotubes and nanowires for nanoelectronic and nanophotonic applications raises some key questions about the role and impact of doping at low dimensionality. Here we show that for semiconducting carbon nanotubes, band gaps and exciton binding energies can be dramatically reduced upon experimentally relevant doping, and can be tuned gradually over a broad range of energies in contrast with higher dimensional systems. The latter feature is made possible by a novel mechanism involving strong dynamical screening effects mediated by acoustic plasmons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据