4.8 Article

Measurement of a Heavy-Hole Hyperfine Interaction in InGaAs Quantum Dots Using Resonance Fluorescence

期刊

PHYSICAL REVIEW LETTERS
卷 105, 期 25, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.105.257402

关键词

-

资金

  1. EU within the MarieCurie Training Research Network EMALI
  2. NCCR Quantum Photonics, research instrument of the Swiss National Science Foundation

向作者/读者索取更多资源

We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 +/- 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据