4.8 Article

Beating the Walker Limit with Massless Domain Walls in Cylindrical Nanowires

期刊

PHYSICAL REVIEW LETTERS
卷 104, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.104.057201

关键词

-

向作者/读者索取更多资源

We present a micromagnetic study on the current-induced domain-wall motion in cylindrical Permalloy nanowires with diameters below 50 nm. The transverse domain walls forming in such thin, round wires are found to differ significantly from those known from flat nanostrips. In particular, we show that these domain walls are zero-mass micromagnetic objects. As a consequence, they display outstanding dynamic properties, most importantly the absence of a breakdown velocity generally known as the Walker limit. Our simulation data are confirmed by an analytic model which provides a detailed physical understanding. We further predict that a particular effect of the current-induced dynamics of these domain walls could be exploited to measure the nonadiabatic spin-transfer torque coefficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据