4.8 Article

Nonequivalence of Ensembles for Long-Range Quantum Spin Systems in Optical Lattices

期刊

PHYSICAL REVIEW LETTERS
卷 104, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.104.240403

关键词

-

向作者/读者索取更多资源

Motivated by the anisotropic long-range nature of the interactions between cold dipolar atoms or molecules in an optical lattice, we study the anisotropic quantum Heisenberg model with Curie-Weiss-type long-range interactions. Absence of a heat bath in optical lattice experiments suggests a study of this model within the microcanonical ensemble. The microcanonical entropy is calculated analytically and nonequivalence of microcanonical and canonical ensembles is found for a range of anisotropy parameters. From the shape of the entropy it follows that the Curie-Weiss Heisenberg model is indistinguishable from the Curie-Weiss Ising model in canonical thermodynamics, although their microcanonical thermodynamics differs. Qualitatively, the observed features of nonequivalent ensembles are expected to be relevant for long-range quantum spin systems realized in optical lattice experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据