4.8 Article

Effective Slip over Superhydrophobic Surfaces in Thin Channels

期刊

PHYSICAL REVIEW LETTERS
卷 102, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.102.026001

关键词

-

向作者/读者索取更多资源

Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a microscopic texture. Recent work has focused on specific cases, such as arrays of pillars or grooves, with limited theoretical guidance. Here, we consider the experimentally relevant limit of thin channels and obtain rigorous bounds on the effective slip length for any two-component (e.g., low-slip and high-slip) texture with given area fractions. Among all anisotropic textures, parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel (or perpendicular) orientation with respect to the mean flow. Tighter bounds for isotropic textures further constrain the effective slip. These results provide a framework for the rational design of superhydrophobic surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据