4.8 Article

Navigating Ultrasmall Worlds in Ultrashort Time

期刊

PHYSICAL REVIEW LETTERS
卷 102, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.102.058701

关键词

-

资金

  1. Generalitat de Catalunya [SGR00889]
  2. Spanish Ministry of Science
  3. NSF [CNS-0434996, CNS-0722070]
  4. DHS [N66001-08-C-2029]
  5. Cisco Systems
  6. [FIS2007-66485-C02-02]

向作者/读者索取更多资源

Random scale-free networks are ultrasmall worlds. The average length of the shortest paths in networks of size N scales as lnlnN. Here we show that these ultrasmall worlds can be navigated in ultrashort time. Greedy routing on scale-free networks embedded in metric spaces finds paths with the average length scaling also as lnlnN. Greedy routing uses only local information to navigate a network. Nevertheless, it finds asymptotically the shortest paths, a direct computation of which requires global topology knowledge. Our findings imply that the peculiar structure of complex networks ensures that the lack of global topological awareness has asymptotically no impact on the length of communication paths. These results have important consequences for communication systems such as the Internet, where maintaining knowledge of current topology is a major scalability bottleneck.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据