4.8 Article

Van der Waals interactions in DFT made easy by Wannier functions

期刊

PHYSICAL REVIEW LETTERS
卷 100, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.100.053002

关键词

-

向作者/读者索取更多资源

Ubiquitous van der Waals interactions between atoms and molecules are important for many molecular and solid structures. These systems are often studied from first principles using the density functional theory (DFT). However, the commonly used DFT functionals fail to capture the essence of van der Waals effects. Most attempts to correct for this problem have a basic semiempirical character, although computationally more expensive first principles schemes have been recently developed. We here describe a novel approach, based on the use of the maximally localized Wannier functions, that appears to be promising, being simple, efficient, accurate, and transferable (charge polarization effects are naturally included). The results of test applications to small molecules and bulk graphite are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据