4.8 Article

Phonon-Mediated Tunneling into Graphene

期刊

PHYSICAL REVIEW LETTERS
卷 101, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.101.216803

关键词

-

资金

  1. U. S. DOE
  2. SFB 668 (Germany)

向作者/读者索取更多资源

Recent scanning tunneling spectroscopy experiments on graphene reported an unexpected gap of about +/- 60 meV around the Fermi level [V. W. Brar , Appl. Phys. Lett. 91, 122102 (2007); Y. Zhang , Nature Phys. 4, 627 (2008)]. Here we give a theoretical investigation explaining the experimentally observed spectra and confirming the phonon-mediated tunneling as the reason for the gap: We study the real space properties of the wave functions involved in the tunneling process by means of ab initio theory and present a model for the electron-phonon interaction, which couples the graphene's Dirac electrons with quasifree-electron states at the Brillouin zone center. The self-energy associated with this electron-phonon interaction is calculated, and its effects on tunneling into graphene are discussed. Good agreement of the tunneling density of states within our model and the experimental dI/dU spectra is found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据