4.8 Article

Ab Initio GW Many-Body Effects in Graphene

期刊

PHYSICAL REVIEW LETTERS
卷 101, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.101.226405

关键词

-

资金

  1. ANR

向作者/读者索取更多资源

We present an ab initio numerical many-body GW calculation of the band plot in freestanding graphene. We consider the full ionic and electronic structure introducing e-e interaction and correlation effects via a self-energy containing non-Hermitian and dynamical terms. With respect to the density-functional theory local-density approximation, the Fermi velocity is renormalized with an increase of 17%, in better agreement with the experiment. Close to the Dirac point the linear dispersion is modified by the presence of a kink, as observed by angle-resolved photoemission spectroscopy. We demonstrate that the kink is due to low-energy pi ->pi(*) single-particle excitations and to the pi plasmon. The GW self-energy does not open the band gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据