4.7 Article

Numerical study of turbulent flow over complex aeolian dune fields: TheWhite Sands National Monument

期刊

PHYSICAL REVIEW E
卷 89, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.89.013005

关键词

-

资金

  1. Shell Exploration and Production Company
  2. Mechanical Engineering Department at Baylor University
  3. National Park Service
  4. National Science Foundation

向作者/读者索取更多资源

The structure and dynamics of fully developed turbulent flows responding to aeolian dune fields are studied using large-eddy simulationwith an immersed boundary method. An aspect of particular importance in these flows is the downwind migration of coherent motions associated with Kelvin-Helmholtz instabilities that originate at the dune crests. These instabilities are responsible for enhanced downward transport of high-momentum fluid via the so-called turbulent sweep mechanism. However, the presence of such structures and their role in determining the bulk characteristics of fully developed dune field sublayer aerodynamics have received relatively limited attention. Moreover, many existing studies address mostly symmetric or mildly asymmetric dune forms. The White Sands National Monument is a field of aeolian gypsum sand dunes located in the Tularosa Basin in southern New Mexico. Aeolian processes at the site result in a complex, anisotropic dune field. In the dune field sublayer, the flow statistics resemble a mixing layer: At approximately the dune crest height, vertical profiles of streamwise velocity exhibit an inflection and turbulent Reynolds stresses are maximum; below this, the streamwise and vertical velocity fluctuations are positively and negatively skewed, respectively. We evaluate the spatial structure of Kelvin-Helmholtz instabilities present in the dune field sublayer (shear length L-s and vortex spacing A(x)) and show that A(x) = m(dune)L(s), where m(dune) approximate to 7.2 in the different sections considered (for turbulent mixing layers, 7 < m < 10

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据