4.7 Article

Infinite-degree-corrected stochastic block model

期刊

PHYSICAL REVIEW E
卷 90, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.90.032819

关键词

-

资金

  1. Lundbeck Foundation [R105-9813]

向作者/读者索取更多资源

In stochastic block models, which are among the most prominent statistical models for cluster analysis of complex networks, clusters are defined as groups of nodes with statistically similar link probabilities within and between groups. A recent extension by Karrer and Newman [Karrer and Newman, Phys. Rev. E 83, 016107 (2011)] incorporates a node degree correction to model degree heterogeneity within each group. Although this demonstrably leads to better performance on several networks, it is not obvious whether modeling node degree is always appropriate or necessary. We formulate the degree corrected stochastic block model as a nonparametric Bayesian model, incorporating a parameter to control the amount of degree correction that can then be inferred from data. Additionally, our formulation yields principled ways of inferring the number of groups as well as predicting missing links in the network that can be used to quantify the model's predictive performance. On synthetic data we demonstrate that including the degree correction yields better performance on both recovering the true group structure and predicting missing links when degree heterogeneity is present, whereas performance is on par for data with no degree heterogeneity within clusters. On seven real networks (with no ground truth group structure available) we show that predictive performance is about equal whether or not degree correction is included; however, for some networks significantly fewer clusters are discovered when correcting for degree, indicating that the data can be more compactly explained by clusters of heterogenous degree nodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据